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A NOTE ON ENTROPY INEQUALITIES AND ERROR 
ESTIMATES FOR HIGHER-ORDER ACCURATE FINITE 

VOLUME SCHEMES ON IRREGULAR FAMILIES OF GRIDS 

SEBASTIAN NOELLE 

ABSTRACT. Recently, Cockburn, Coquel and LeFloch proved convergence and 
error estimates for higher-order finite volume schemes. Their result is based 
on entropy inequalities which are derived under restrictive assumptions on ei- 
ther the flux function or the numerical fluxes. Moreover, they assume that 
the spatial grid satisfies a standard regularity assumption. Using instead en- 
tropy inequalities derived in previous work by Kr6ner, Noelle and Rokyta and 
a weaker condition on the grid, we can generalize and simplify the error esti- 
mates. 

1. INTRODUCTION 

In a recent paper, Cockburn, Coquel and LeFloch [2] derived error estimates for 
higher-order finite volume schemes for scalar conservation laws 

(1) &tu+divf(u) = 0 in R+ x Rd 

(2) u(O) =uo on Rd. 

They modified the Kuznetsov [7] approximation theory to obtain an 41/4 conver- 
gence rate. Analogous results were derived by Vila [10] for first-order finite volume 
schemes and by Cockburn and Gremaud [4] for the streamline diffusion shock- 
capturing and the discontinuous Galerkin finite element methods. 

In order to derive the error estimate, Cockburn, Coquel and LeFloch assume 
that the entropy inequality 

UM (U+1, C) - UM (UK, C) + TPK {GnK -FM (uK, C) NeK} 

(3) <TPk na< DUM (unec 
<IKI Kg e O~V (K,e c 

holds together with the bound 

(4) S S S 
ia~,Kel iUKe-U Kel leiT < Clhhv 

O<nr<T KGTh eC&K 

where ae > 0 is a fixed constant (for the notation compare [2]). For finite volume 
schemes built on a piecewise constant approximation and E-fluxes, the entropy 
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inequality (3) holds naturally with right-hand side equal to zero. For schemes 
which use piecewise polynomial approximations, additional assumptions are needed 
in order to guarantee (3) and (4). Cockburn, Coquel and LeFloch derive such 
entropy inequalities for antidiffusive schemes, which are assumed to satisfy so-called 
"sharp entropy inequalities". For the higher-order schemes, these "sharp entropy 
inequalities" are derived in [3, 5] under the assumption that either 

(i) there is a 6 > 0 such that for all u and all NeK 

(5) | N, K>&f(u)N |>8 

or 
(ii) the numerical viscosity coefficient of the scheme is bounded below by a pos- 

itive constant. 
Condition (i) restricts both the grids and the flux functions: given any vector 

02f(U)/aU2, there are always directions N such that (5) is violated, so polygons 
with such normals have to be excluded from the grid. This may lead to com- 
plications, especially when the grid is refined adaptively. Moreover, certain flux 
functions cannot be treated by this approach, for example f (u) = (cos u, sin u). 

Condition (ii) excludes some important numerical flux functions, such as Go- 
dunov's flux and the Engquist-Osher flux. 

We remark in this note that the main result of [2] holds if we replace (3), (4) by 
the assumption that 

(6) 

UM(U7+j1, C) -UM(u7/, C) + TPK fG' -FM(u',c) Ne) < K~~e K JKj {G, K *NKK} CMhc, 

where ai E (2, 1] is a given constant. 
The point of this note is that the entropy inequality (6) has been obtained by 

the author [8] (see also [6]) for higher-order finite volume schemes without making 
any assumption of genuine nonlinearity on the flux function f as in condition (i) 
above and for MUSCL-type finite volume schemes based on general E-fluxes, where 
condition (ii) is not required. Moreover, (6) may be obtained by one direct calcu- 
lation (see [8, Lemma 4.3] or [6, Theorem 5.1]), while in order to derive (3), (4), 
one needs to combine the results of several sections of the papers [5, 3, 2]. 

In [8], the author generalized existing convergence results for finite volume 
schemes to schemes built upon irregular families of grids, where cells may become 
flat at a certain rate as the grid parameter h tends to zero. Such grids may be 
important in applications, especially when refining the grid along an essentially 
one-dimensional shock front or in a boundary layer. Here we refine the analysis of 
[2], made under a regularity assumption on the grid, to include irregular families 
of grids, and give precise estimates for the convergence rate. 

In ?2, we define the class of finite volume schemes considered in this paper and 
comment on our entropy inequality (6), and in ?3, we sketch how to combine (6) 
with the analysis in [2] in order to obtain the error estimates. Since our paper 
is closely related to [2], we follow the notation of that paper, with the following 
exceptions: the constants ai, A, ny, 6, Ci and C2 introduced here are not identical 
with those used in [2]. 
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2. ENTROPY INEQUALITIES FOR MUSCL-TYPE FINITE VOLUME SCHEMES 

Let Th be a polygonal grid of Rd. Given a polygon K E Th, let e C OK denote a 
side of K and let NeK denote the outward unit normal to K at side e. We assume 
that the intersection of two polygons is a union of common sides and vertices. Let 

PK = E le 
eC&K 

be the perimeter of K, let hK be the outer and PK the inner diameter of K. Let 

h sup hK, 
KGTh 

p:= inf PK 

and let r > 0 be the timestep. Let the time T > 0 be arbitrarily large and fixed, 
and let tn: Tn, n = O ... , nT, such that T = TnT. We consider schemes of the 
form 

(7) 2+1 = _ - 
Un 

ET 
IengK 

= 
tU 

__ 
UK UK egK UK,e~ jKj e~K ecaKPK 

where 

(8) u~ ur- K - f~Kue = K- IKI eK K NeK) 

and 

(9) tU0 kfuo (x)dx 
UKI 

K 

The initial data u0 are bounded and measurable, and for simplicity of exposition, 
we assume that u0 has compact support. 

The numerical flux in (7), (8) is defined by 

(10) gee K(UK + UeiU7Ke +K 
i 

e,e)* 

Here, Ke is the neighbor of K with e C OK U &Ke, and ge,K(, -) is a two-point 
conservative E-flux consistent with f NeK i.e., it satisfies 

9e,K(VW) -f(s) NeK < O 
w-v 

for all s between v and w (compare Osher [9]). We assume that f and g possess 
global Lipschitz constants Lf and Lg. Since we will only consider bounded initial 
data, this can always be achieved by modifying f outside of the range of u0. In 
general, Lg > Lf, but in practice, we may restrict our attention to schemes satis- 
fying Lg = Lf, which is, for example, true for the Godunov flux and the modified 
Lax-Friedrichs flux (see [5, 8]). 

The values UKn allow for a piecewise higher-order polynomial interpolation of 
the cell averages UK (compare the discussion in [2, 5, 6, 8]). In the following we 
assume that there are constants ae > 0 and C1, C2 independent of h, T and uo such 
that 

(ll) IU~~~~~~~K ,el < Clhe 

and 

(12) in e(/Un - UK n) < C2h2a. 
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If ar < 1, then (11) and (12) do not reduce the formal order of accuracy of the 
scheme. Assumption (12) is a natural one: in the presence of large jumps, where 

IUKjUK- I > Clh , it states that up to terms of order h2 , the interpolated value 
UK +?iie at an edge e between the cells K and Ke lies between the mean values UK 
and UK over these cells. Such an assumption is usually enforced by a flux-limiter. 

On the space-time grid we make the assumptions that the standard CFL-condition 

(13) TPK L < 1 

holds for all K E Th and that there are constants ay> 0 and C3 independent of h, 
T and u0 such that 

(14) - < C3h7. 

In fact, the timestep restriction (13) may be slightly relaxed by refining the convex 
decomposition (7) - (8) of the numerical scheme and taking the local speed of wave 
propagation into account (see Appendix B of [8]). 

Note that from (13), r < Ch, so (14) is compatible with (13) only if -y < 2a - 1. 
It is argued below that the timestep r may be chosen to be of the order of p. 
Therefore, condition (14) weakens the standard regularity condition 

h 
(15) -<C. 

p 

This is discussed in detail after the proof of Theorem 3.1. 
Finally, we denote by uh : Rd x [0, T] -* R the approximate solution, given as 

(16) U h(t, X) := UK for x E K, t E [tn, tn+ 1) . 

Under these assumptions, it can be verified immediately that uh satisfies the L?- 
bound 

(17) ||Uh IILo(RdX [OT]) < Iuo IILO(Rd) + CThy-. 

Here and below we use C for constants which do not depend on h, T and uo. 
In [6, 8] Krdner, Rokyta and the author showed that the discrete entropy in- 

equality (6) holds for the Godunov and the Lax-Friedrichs flux. Since all E-fluxes 
are convex combinations of these two fluxes, (6) holds for all MUSCL-type finite 
volume schemes built on E-fluxes (see [8]). 

3. ERROR ESTIMATES 

As in [2], we assume that the scheme has a finite speed of propagation. In 
particular, we assume that there are compact subsets Qh(t) of Rd. 0 < t < T. such 
that 

(18) Qh(tl) C Q 2(t2) cc Rd for 0 < t1 < t2 < T 

and 

(19) supp U(t, *) U supp Uh(t,.) C Qh(t) for 0 < t < T. 

where u is the entropy weak solution of (1), (2). 
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Following Kuznetsov [7], Cockburn, Coquel and Le Floch show that 

(20) 

| uh(T, ) -u(T, *)|L1 (Rd) 

< Q(T)I +3 Iuh(O,.)-Uol[L1(Rd)+9 E+E011H (UO)IIL(Rd) TV(uo) 

+6 sup (SPe(U, Uh; t) + Epho e(uuh; t) + E ho e(uh, u; t)). 
O<t<T 

E 

Here, TV(uo) denotes the total variation of u0. For the definition of Sh andh 
compare [2]. Briefly, 6o > 0 and E > 0 are small parameters defining a family of 
test functions wE0 (t) and 0, (x), and the large parameter M regularizes the Kruzkov 
entropy U(u, c) := ju-cl and the corresponding entropy flux F(u, c). Moreover, 
S h ? (u, uh; t) is the lack of symmetry of the entropy pairs (UM, FM), EP0 (U) uh; t) 
is the entropy production of the entropy weak solution u and E h(Uh, U; t) is the 
entropy production of the approximate solution uh. 

Under the assumption that E > h, and using the L?-bound (17), one can show 
precisely as in [2] that there is a constant C > 0 such that for 0 < t < T 

(21) 

S~hO(uu h;t) +E h (U, Uh;t) < CM TV(uo) T+C TjQh(T) 

h 
+ C-(TV(uo) T + 1Uo WLD (Rd) Qh(T) 1) 

6 

The term E h 0,(uh, u; t) is the one which is the most difficult to handle, and it is 
here where Cockburn, Coquel and LeFloch use their entropy inequalities (3), (4). 
In the following, we briefly sketch how to obtain an error estimate analogous to that 
in [2] when replacing (3), (4) and the regularity assumption (15) by our estimate 
(6) and the assumption (14). For details, we refer the reader to [2]. 

First, one can use (6) to derive the auxiliary estimate 

n-1 
jejIKj 

___ 

Ei=O KE~h E& l_ 

un+1 - uKn+1 2 < 
? 

UO112 2 + C Tj~h(T) . 
n=0 KE~h eCo3K 

Modifying the derivation in [2] slightly, we obtain 

3 

(22) Eh ?(uh u;t) <E Oj (t, x, u(t, x))dt dx + / 04(t,x)dt dx. 
j=1 QT QT 

Here, 01, 02 and 03 are defined as in [2], and 

n-1 

04(t, x) := CMh2s E E KJL4(x; x')wgo (tn+i -t), 
n=O KETh 

where the test functions +L4 and wao are defined in [2]. One can now obtain the 
estimates 

(23) 

Q01(t, xu(t,+x))dtdx<C 
h 

IUOIIL2T'/2 Qh(T)T1/2+C C /eTlQh(T)II 
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(24) 
h IT {02 (t, x, u(t, x)) + 03 (t, x, u(t, x))} dt dx < C-_ IUOIILo(Rd) Qh(t)| 

QT 6 

hl+aYR 
+ C h+YaTIQh(t)I1 

6 

(25) I 04(t,x)dtdx < CMh2a-1TIQh(T)I. 
QT 

Now the following convergence result is basically a corollary of the proof of Theorem 
2.1 in [2]. 

Theorem 3.1. Let uo E L' (Rd) n BV(Rd) be of compact support and let T > 0 
be given. Let u be the entropy weak solution of (1), (2) and Uh the approximate 
solution defined by the (possibly higher-order) finite volume scheme (7) - (10) and 
(16). Suppose that 1/2 < ai < 1 and 0 < -y < 2a - 1 are given independently of 
h and that conditions (11), (12), (13), (14), (18) and (19) hold. Then there are 
positive constants 6, ho and Co such that for all t E [0, T] and all h E (0, ho] the 
approximate solution uh satisfies the error estimate 

(26) I|uh(t,.) - u(t, )HL1(Rd) < Coh8. 

Here, 6 is independent of h, T and uO, while ho and Co may depend on T, Qh (T) , 
TV(uo), IUOIIL-(Rd) and |lUOHIL2(Rd), but not on h. In particular, 
(i) if 3/4 < a < 1 and -y= 2a-1, then 

(27) 1 
4, 

(ii) if 3/4 < a < 1 and 2(1-a) < ?y < 2a -1, then 

(28) 8= 
1 + -y/2 - a < 1 

2 4' 
(iii) if 1/2 < a l < 1, 0 < y < 2a -1 and -y < 2(1-ca), then 

(29) 8=2<!. 2 4 

Proof Let 6o := /11 dfu (uO)ll L(Rci). Note that 

(30) Hu h(O, )-U UL1(Rd) < hTV(uo). 

Combining the basic approximation result (20) with inequalities (21) - (25) and 
(30) and minimizing over M and 6, one obtains for all t E [0, T] that 

(31) 

|uh(t,.) - u(t, ')IILl(Rd) < C(1) h( 1+/2-)/2 + C(2) hY/2 + C(3) h( 1+/2)/2 

+ C(4) h(W+Y-a)/2 + C(5) h1/2 + C(6) h, 

where 

0(1) = CTV(uo)12 /i|UOHL2(Rd)T /Qh(T)| /, 

C(2) = C (IQh(T)11/2 + TV(uo)1/2 T1/2) T1/2 IQh(T) 11/2 

C(3) C(4) = C TV(uo) 1/2 T1/2 IQh(T) |1/2K 

C(5)= C TV(uo) (T1/2 + ||UO||LQ(Rd) [Qh(T) |12)) 

C(6) = C TV(uo) 
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and the constants C are independent of h, T and uo. Here the minimizing E is 
larger than h provided that 

h < ho:= C (TiQh(T)i)1/3 (HULL2(Rd) ) 

The statements of the theorem follow directly from (31). E 

Finally, we compare conditions (14) and (15). In [8], the author proved conver- 
gence under the still weaker assumption that 

(32) lim =0 
h-o T 

and discussed in detail that this assumption allows irregular families of grids, where 
cells may become flat with a certain rate as h -) 0. Indeed, this rate is shown to 
be the optimal rate which assures convergence of general finite volume E-schemes. 
In the context of the present paper, condition (14) may be guaranteed by the 
assumptions that there is a constant C4 > 0 such that 

(33) r > C4 
C3 

and 

(34) < C4hV. 

For grids Th consisting of convex polygons, it is shown in [8] that 

PK < JKJ < PK for all K E Th. 
2d - PK? - 2 

Therefore, the CFL-condition (13) is satisfied if 

T < p/(2dLg)) 

so condition (33) is compatible with (13). Condition (34) can be rewritten as 

h 
(35) .- < C4h-'8, where 2:= 2--1- y. 

We call : the irregularity coefficient of the family of triangulations (Th)h>O- If 
/ > 0, then (35) is weaker than (15), and cells may become flat with rate 3 as the 
grid parameter h tends to zero. Such families of grids are important in applications, 
in particular when refining the grid in a shock or boundary layer (see for example 
[1]). 

Suppose now that, for one reason or another, we decide to compute on an irreg- 
ular family of grids with prescribed irregularity coefficient : > 0. It follows from 
statements (ii) and (iii) of Theorem 3.1 that in order to obtain the convergence rate 
6 which is optimal for that given 3, we need to choose 

/3+3 ar > 
3 

and 

ny = 2ca - 1- -. 

From (28), we obtain the convergence rate 

(36) A A 
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For a regular family of grids, where 3 = 0, we obtain from statement (i) of Theorem 
3.1 that the optimal convergence rate 6 equals 1/4. These relations are illustrated 
in Figure 1: the parameter regimes identified in statements (i) - (iii) of Theorem 
3.1 are labeled by I - III, respectively. In region I, which contains only regular 
families of grids, we obtain the optimal convergence rate 1/4, and in region II, 
which admits irregular families of grids, we obtain the rate (1 - 3)/4, which is 
also optimal. In region III, we obtain convergence, but not with the optimal rate. 
The lower convergence rate in this region may be understood when comparing the 
isolines of 3 and 6 in regions II and III. 

gamma (a) gamma (b) gamma (c) 
1 1 /1 

I~~~~~ 

0.5 0.5 0.5 
,<.0tti-ttig_ / A / j ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \ 

0.5 0.75 1 0. 0 / /75 / /1 , \ / 1 

sceesi th X-X 
paaee pln. (b) Irglity of the grids:.... /// 

ilne of . ic Covrec rates: ioiie of 
t: 

Thatho zi;sitti grateful to one of- the reere fo th folwn remark./In4I 

1'."'n. - * I i 

Co r .- Ci Il* y 2 C a _ prov t e a 

fo the shock-c..'i iApturin discontinuoui is Gaeri mevthd Here, 

hK 

/ I~~~~~KP 

i. /::.iEESENN~tN~i.i.::XiE~ii~K / 

0.5ltigtist u 0.75tation 0.5 0.75in equality i 0.5 0.75 ob ain ha 

The auho is grteu to' onei of th reere fo th folwngrmr. In [4, 

frteshck-captuingth dsontinuousete Galerkne metod Heeglre, fhgis 

C~~h = sup <sp'P 

is eK PK ( Thereauthoor resulrteu to6 onplesof the higher-eordter fintollowin methods con-[4 

Traslatrin this tockur notatin an d G assumingdual in (35) oneob 

__ :=up ?up 
P KK PKcP 

sideredting this papeur coatonvrewt rate (suh/in1/ eqasit in [4]. onotan 
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